Serveur d'exploration sur l'agrobacterium et la transgénèse

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Functional roles of the pepper leucine-rich repeat protein and its interactions with pathogenesis-related and hypersensitive-induced proteins in plant cell death and immunity.

Identifieur interne : 000237 ( Main/Exploration ); précédent : 000236; suivant : 000238

Functional roles of the pepper leucine-rich repeat protein and its interactions with pathogenesis-related and hypersensitive-induced proteins in plant cell death and immunity.

Auteurs : Jeum Kyu Hong [Corée du Sud] ; In Sun Hwang [Corée du Sud] ; Byung Kook Hwang [Corée du Sud]

Source :

RBID : pubmed:28508261

Descripteurs français

English descriptors

Abstract

MAIN CONCLUSION

Pepper leucine-rich repeat protein (CaLRR1) interacts with defense response proteins to regulate plant cell death and immunity. This review highlights the current understanding of the molecular functions of CaLRR1 and its interactor proteins. Plant cell death and immune responses to microbial pathogens are controlled by complex and tightly regulated molecular signaling networks. Xanthomonas campestris pv. vesicatoria (Xcv)-inducible pepper (Capsicum annuum) leucine-rich repeat protein 1 (CaLRR1) serves as a molecular marker for plant cell death and immunity signaling. In this review, we discuss recent advances in elucidating the functional roles of CaLRR1 and its interacting plant proteins, and understanding how they are involved in the cell death and defense responses. CaLRR1 physically interacts with pepper pathogenesis-related proteins (CaPR10 and CaPR4b) and hypersensitive-induced reaction protein (CaHIR1) to regulate plant cell death and defense responses. CaLRR1 is produced in the cytoplasm and trafficked to the extracellular matrix. CaLRR1 binds to CaPR10 in the cytoplasm and CaPR4b and CaHIR1 at the plasma membrane. CaLRR1 synergistically accelerates CaPR10-triggered hypersensitive cell death, but negatively regulates CaPR4b- and CaHIR1-triggered cell death. CaHIR1 interacts with Xcv filamentous hemagglutinin (Fha1) to trigger disease-associated cell death. The subcellular localization and cellular function of these CaLRR1 interactors during plant cell death and defense responses were elucidated by Agrobacterium-mediated transient expression, virus-induced gene silencing, and transgenic overexpression studies. CaPR10, CaPR4b, and CaHIR1 positively regulate defense signaling mediated by salicylic acid and reactive oxygen species, thereby activating hypersensitive cell death and disease resistance. A comprehensive understanding of the molecular functions of CaLRR1 and its interacting protein partners in cell death and defense responses will provide valuable information for the molecular genetics of plant disease resistance, which could be exploited as a sustainable disease management strategy.


DOI: 10.1007/s00425-017-2709-5
PubMed: 28508261


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Functional roles of the pepper leucine-rich repeat protein and its interactions with pathogenesis-related and hypersensitive-induced proteins in plant cell death and immunity.</title>
<author>
<name sortKey="Hong, Jeum Kyu" sort="Hong, Jeum Kyu" uniqKey="Hong J" first="Jeum Kyu" last="Hong">Jeum Kyu Hong</name>
<affiliation wicri:level="1">
<nlm:affiliation>Laboratory of Plant Pathology and Protection, Department of Horticultural Science, College of Biosciences, Gyeongnam National University of Science and Technology, Jinju, 52725, Republic of Korea.</nlm:affiliation>
<country xml:lang="fr">Corée du Sud</country>
<wicri:regionArea>Laboratory of Plant Pathology and Protection, Department of Horticultural Science, College of Biosciences, Gyeongnam National University of Science and Technology, Jinju, 52725</wicri:regionArea>
<wicri:noRegion>52725</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Hwang, In Sun" sort="Hwang, In Sun" uniqKey="Hwang I" first="In Sun" last="Hwang">In Sun Hwang</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Horticultural Biotechnology, Kyung Hee University, Yongin, 17104, Republic of Korea.</nlm:affiliation>
<country xml:lang="fr">Corée du Sud</country>
<wicri:regionArea>Department of Horticultural Biotechnology, Kyung Hee University, Yongin, 17104</wicri:regionArea>
<wicri:noRegion>17104</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Hwang, Byung Kook" sort="Hwang, Byung Kook" uniqKey="Hwang B" first="Byung Kook" last="Hwang">Byung Kook Hwang</name>
<affiliation wicri:level="1">
<nlm:affiliation>Laboratory of Molecular Plant Pathology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea. bkhwang@korea.ac.kr.</nlm:affiliation>
<country xml:lang="fr">Corée du Sud</country>
<wicri:regionArea>Laboratory of Molecular Plant Pathology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841</wicri:regionArea>
<wicri:noRegion>02841</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2017">2017</date>
<idno type="RBID">pubmed:28508261</idno>
<idno type="pmid">28508261</idno>
<idno type="doi">10.1007/s00425-017-2709-5</idno>
<idno type="wicri:Area/Main/Corpus">000233</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000233</idno>
<idno type="wicri:Area/Main/Curation">000233</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000233</idno>
<idno type="wicri:Area/Main/Exploration">000233</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Functional roles of the pepper leucine-rich repeat protein and its interactions with pathogenesis-related and hypersensitive-induced proteins in plant cell death and immunity.</title>
<author>
<name sortKey="Hong, Jeum Kyu" sort="Hong, Jeum Kyu" uniqKey="Hong J" first="Jeum Kyu" last="Hong">Jeum Kyu Hong</name>
<affiliation wicri:level="1">
<nlm:affiliation>Laboratory of Plant Pathology and Protection, Department of Horticultural Science, College of Biosciences, Gyeongnam National University of Science and Technology, Jinju, 52725, Republic of Korea.</nlm:affiliation>
<country xml:lang="fr">Corée du Sud</country>
<wicri:regionArea>Laboratory of Plant Pathology and Protection, Department of Horticultural Science, College of Biosciences, Gyeongnam National University of Science and Technology, Jinju, 52725</wicri:regionArea>
<wicri:noRegion>52725</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Hwang, In Sun" sort="Hwang, In Sun" uniqKey="Hwang I" first="In Sun" last="Hwang">In Sun Hwang</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Horticultural Biotechnology, Kyung Hee University, Yongin, 17104, Republic of Korea.</nlm:affiliation>
<country xml:lang="fr">Corée du Sud</country>
<wicri:regionArea>Department of Horticultural Biotechnology, Kyung Hee University, Yongin, 17104</wicri:regionArea>
<wicri:noRegion>17104</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Hwang, Byung Kook" sort="Hwang, Byung Kook" uniqKey="Hwang B" first="Byung Kook" last="Hwang">Byung Kook Hwang</name>
<affiliation wicri:level="1">
<nlm:affiliation>Laboratory of Molecular Plant Pathology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea. bkhwang@korea.ac.kr.</nlm:affiliation>
<country xml:lang="fr">Corée du Sud</country>
<wicri:regionArea>Laboratory of Molecular Plant Pathology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841</wicri:regionArea>
<wicri:noRegion>02841</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Planta</title>
<idno type="eISSN">1432-2048</idno>
<imprint>
<date when="2017" type="published">2017</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Capsicum (genetics)</term>
<term>Capsicum (metabolism)</term>
<term>Cell Death (genetics)</term>
<term>Plant Diseases (MeSH)</term>
<term>Plant Immunity (genetics)</term>
<term>Plant Proteins (genetics)</term>
<term>Plant Proteins (physiology)</term>
<term>Proteins (genetics)</term>
<term>Proteins (physiology)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Capsicum (génétique)</term>
<term>Capsicum (métabolisme)</term>
<term>Immunité des plantes (génétique)</term>
<term>Maladies des plantes (MeSH)</term>
<term>Mort cellulaire (génétique)</term>
<term>Protéines (génétique)</term>
<term>Protéines (physiologie)</term>
<term>Protéines végétales (génétique)</term>
<term>Protéines végétales (physiologie)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Plant Proteins</term>
<term>Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Capsicum</term>
<term>Cell Death</term>
<term>Plant Immunity</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Capsicum</term>
<term>Immunité des plantes</term>
<term>Mort cellulaire</term>
<term>Protéines</term>
<term>Protéines végétales</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Capsicum</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Capsicum</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Protéines</term>
<term>Protéines végétales</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="physiology" xml:lang="en">
<term>Plant Proteins</term>
<term>Proteins</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Plant Diseases</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Maladies des plantes</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>MAIN CONCLUSION</b>
</p>
<p>Pepper leucine-rich repeat protein (CaLRR1) interacts with defense response proteins to regulate plant cell death and immunity. This review highlights the current understanding of the molecular functions of CaLRR1 and its interactor proteins. Plant cell death and immune responses to microbial pathogens are controlled by complex and tightly regulated molecular signaling networks. Xanthomonas campestris pv. vesicatoria (Xcv)-inducible pepper (Capsicum annuum) leucine-rich repeat protein 1 (CaLRR1) serves as a molecular marker for plant cell death and immunity signaling. In this review, we discuss recent advances in elucidating the functional roles of CaLRR1 and its interacting plant proteins, and understanding how they are involved in the cell death and defense responses. CaLRR1 physically interacts with pepper pathogenesis-related proteins (CaPR10 and CaPR4b) and hypersensitive-induced reaction protein (CaHIR1) to regulate plant cell death and defense responses. CaLRR1 is produced in the cytoplasm and trafficked to the extracellular matrix. CaLRR1 binds to CaPR10 in the cytoplasm and CaPR4b and CaHIR1 at the plasma membrane. CaLRR1 synergistically accelerates CaPR10-triggered hypersensitive cell death, but negatively regulates CaPR4b- and CaHIR1-triggered cell death. CaHIR1 interacts with Xcv filamentous hemagglutinin (Fha1) to trigger disease-associated cell death. The subcellular localization and cellular function of these CaLRR1 interactors during plant cell death and defense responses were elucidated by Agrobacterium-mediated transient expression, virus-induced gene silencing, and transgenic overexpression studies. CaPR10, CaPR4b, and CaHIR1 positively regulate defense signaling mediated by salicylic acid and reactive oxygen species, thereby activating hypersensitive cell death and disease resistance. A comprehensive understanding of the molecular functions of CaLRR1 and its interacting protein partners in cell death and defense responses will provide valuable information for the molecular genetics of plant disease resistance, which could be exploited as a sustainable disease management strategy.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">28508261</PMID>
<DateCompleted>
<Year>2018</Year>
<Month>08</Month>
<Day>16</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1432-2048</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>246</Volume>
<Issue>3</Issue>
<PubDate>
<Year>2017</Year>
<Month>Sep</Month>
</PubDate>
</JournalIssue>
<Title>Planta</Title>
<ISOAbbreviation>Planta</ISOAbbreviation>
</Journal>
<ArticleTitle>Functional roles of the pepper leucine-rich repeat protein and its interactions with pathogenesis-related and hypersensitive-induced proteins in plant cell death and immunity.</ArticleTitle>
<Pagination>
<MedlinePgn>351-364</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1007/s00425-017-2709-5</ELocationID>
<Abstract>
<AbstractText Label="MAIN CONCLUSION" NlmCategory="UNASSIGNED">Pepper leucine-rich repeat protein (CaLRR1) interacts with defense response proteins to regulate plant cell death and immunity. This review highlights the current understanding of the molecular functions of CaLRR1 and its interactor proteins. Plant cell death and immune responses to microbial pathogens are controlled by complex and tightly regulated molecular signaling networks. Xanthomonas campestris pv. vesicatoria (Xcv)-inducible pepper (Capsicum annuum) leucine-rich repeat protein 1 (CaLRR1) serves as a molecular marker for plant cell death and immunity signaling. In this review, we discuss recent advances in elucidating the functional roles of CaLRR1 and its interacting plant proteins, and understanding how they are involved in the cell death and defense responses. CaLRR1 physically interacts with pepper pathogenesis-related proteins (CaPR10 and CaPR4b) and hypersensitive-induced reaction protein (CaHIR1) to regulate plant cell death and defense responses. CaLRR1 is produced in the cytoplasm and trafficked to the extracellular matrix. CaLRR1 binds to CaPR10 in the cytoplasm and CaPR4b and CaHIR1 at the plasma membrane. CaLRR1 synergistically accelerates CaPR10-triggered hypersensitive cell death, but negatively regulates CaPR4b- and CaHIR1-triggered cell death. CaHIR1 interacts with Xcv filamentous hemagglutinin (Fha1) to trigger disease-associated cell death. The subcellular localization and cellular function of these CaLRR1 interactors during plant cell death and defense responses were elucidated by Agrobacterium-mediated transient expression, virus-induced gene silencing, and transgenic overexpression studies. CaPR10, CaPR4b, and CaHIR1 positively regulate defense signaling mediated by salicylic acid and reactive oxygen species, thereby activating hypersensitive cell death and disease resistance. A comprehensive understanding of the molecular functions of CaLRR1 and its interacting protein partners in cell death and defense responses will provide valuable information for the molecular genetics of plant disease resistance, which could be exploited as a sustainable disease management strategy.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Hong</LastName>
<ForeName>Jeum Kyu</ForeName>
<Initials>JK</Initials>
<AffiliationInfo>
<Affiliation>Laboratory of Plant Pathology and Protection, Department of Horticultural Science, College of Biosciences, Gyeongnam National University of Science and Technology, Jinju, 52725, Republic of Korea.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Hwang</LastName>
<ForeName>In Sun</ForeName>
<Initials>IS</Initials>
<AffiliationInfo>
<Affiliation>Department of Horticultural Biotechnology, Kyung Hee University, Yongin, 17104, Republic of Korea.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Hwang</LastName>
<ForeName>Byung Kook</ForeName>
<Initials>BK</Initials>
<Identifier Source="ORCID">http://orcid.org/0000-0003-1782-8990</Identifier>
<AffiliationInfo>
<Affiliation>Laboratory of Molecular Plant Pathology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea. bkhwang@korea.ac.kr.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D016454">Review</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2017</Year>
<Month>05</Month>
<Day>15</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Germany</Country>
<MedlineTA>Planta</MedlineTA>
<NlmUniqueID>1250576</NlmUniqueID>
<ISSNLinking>0032-0935</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010940">Plant Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D011506">Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C107657">leucine-rich repeat proteins</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D002212" MajorTopicYN="N">Capsicum</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016923" MajorTopicYN="N">Cell Death</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010935" MajorTopicYN="N">Plant Diseases</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D057865" MajorTopicYN="N">Plant Immunity</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010940" MajorTopicYN="N">Plant Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011506" MajorTopicYN="N">Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Cell death</Keyword>
<Keyword MajorTopicYN="N">Defense response</Keyword>
<Keyword MajorTopicYN="N">Leucine-rich repeat (LRR) protein</Keyword>
<Keyword MajorTopicYN="N">Pathogenesis-related (PR) protein</Keyword>
<Keyword MajorTopicYN="N">Pepper (Capsicum annuum)</Keyword>
<Keyword MajorTopicYN="N">Protein–protein interaction</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2017</Year>
<Month>04</Month>
<Day>10</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2017</Year>
<Month>05</Month>
<Day>06</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2017</Year>
<Month>5</Month>
<Day>17</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2018</Year>
<Month>8</Month>
<Day>17</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2017</Year>
<Month>5</Month>
<Day>17</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">28508261</ArticleId>
<ArticleId IdType="doi">10.1007/s00425-017-2709-5</ArticleId>
<ArticleId IdType="pii">10.1007/s00425-017-2709-5</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Plant Physiol. 2009 Aug;150(4):1750-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19571312</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2011 Feb;23(2):823-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21335377</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Bot. 2004 Mar;93(3):227-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14988095</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2009 Apr;58(1):69-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19054360</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2012 Apr;24(4):1675-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22492811</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Gen Genet. 1991 Nov;230(1-2):113-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1745223</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1989 Jul 20;340(6230):245-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2547163</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 2008 Jan 15;407(1-2):193-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17980516</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Phytopathol. 2009;47:177-206</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19400653</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2009 Dec;32(12):1804-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19712067</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2002 Oct 1;99(20):13142-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12271135</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Plant Physiol. 2010 Jan 15;167(2):121-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19682768</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Phytopathol. 2004;42:185-209</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15283665</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2000 Jan;13(1):136-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10656596</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2013 Sep;54(9):1549-59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23877877</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Rep. 2010 Feb;37(2):995-1001</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19728144</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Mol Life Sci. 2008 Aug;65(15):2307-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18408889</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2002 Sep;31(6):777-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12220268</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2005 Mar;17(3):1000-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15722474</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Immunol. 2013 Dec;34(12):610-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23827258</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Microbiol. 2004 Mar;6(3):201-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14764104</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Protein Expr Purif. 2001 Dec;23(3):380-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11722174</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Host Microbe. 2008 Jun 12;3(6):348-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18541211</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 1994 Apr;5(4):459-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8012400</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2010 Aug;13(4):472-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20483655</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2011 May 17;108(20):8503-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21464298</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2004 Jan;37(2):186-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14690503</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proteins. 2004 Feb 15;54(3):394-403</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14747988</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2015 Jan;241(1):1-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25252816</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2008 Aug;228(3):485-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18506481</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2011 Sep 9;286(36):31297-307</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21757708</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arabidopsis Book. 2011;9:e0156</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22303280</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2004 Nov;40(3):428-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15469500</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2006 Nov 16;444(7117):323-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17108957</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2017 Feb;245(2):237-253</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27928637</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2000 Nov 24;290(5496):1594-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11090361</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Pathol. 2001 Sep 1;2(5):287-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20573017</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2006 Jul;19(7):747-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16838787</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2013 Dec;26(12):1441-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23931712</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proteomics. 2011 Sep;11(18):3675-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21751381</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 1998 Mar;36(5):681-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9526500</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2001 Jun 14;411(6839):826-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11459065</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Res Notes. 2011 Nov 13;4:493</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22078230</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Death Differ. 2011 Aug;18(8):1247-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21475301</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2015 Jun;66(11):3367-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25873668</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2014 May;165(1):76-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24686111</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Immunol. 2011 Aug 18;12(9):817-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21852785</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Phytopathol. 2001;39:313-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11701868</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Proteomics. 2010 Feb 10;73(4):709-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19857612</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Immunol. 2006 Dec;7(12):1243-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17110940</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1997 Dec;115(4):1557-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9414563</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 1996 Aug;10(2):315-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8771787</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2012 Aug;15(4):349-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22705024</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2015 Feb;167(2):307-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25491184</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2004 Feb 20;1676(3):211-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14984927</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2008 Jan;227(2):409-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17899171</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2014 Feb;77(4):521-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24304389</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2009 Jan;229(2):393-402</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18974997</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theor Appl Genet. 2003 Oct;107(6):1094-101</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12928776</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2008;59(3):501-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18079135</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2001 Dec;4(6):561-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11641074</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2009 May 8;324(5928):750-2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19423816</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2010 Dec 30;10:290</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21192820</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1999 Jul 6;96(14):7956-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10393929</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2003 Jun;132(2):530-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12805585</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2000 Apr;42(6):871-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10890534</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2010 Aug;23(8):1069-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20615117</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2000 Sep 22;275(38):29579-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10862763</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2001 Jun 14;411(6839):848-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11459068</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2009;60(13):3645-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19628572</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2013 Aug 16;341(6147):746-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23950531</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2009 Aug;150(4):1638-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19561123</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2011;6(7):e21614</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21789174</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2009 Sep 3;583(17):2865-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19647737</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1994 Nov;6(11):1583-1592</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12244227</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2010 Nov;64(3):379-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21049563</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Biochem Sci. 1994 Oct;19(10):415-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7817399</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2001 Jan 12;276(2):1317-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11038364</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 2007 Apr 15;403(2):313-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17206938</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 1996 Dec;9(9):819-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8969530</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2008 Jun;147(2):503-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18434605</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1996 Dec 20;274(5295):2060-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8953033</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2009;4(2):e4358</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19194503</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2009;60:379-406</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19400727</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2013 Mar 12;14:166</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23496930</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2005 Aug;18(8):856-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16134898</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Struct Biol. 2001 Dec;11(6):725-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11751054</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2002 Oct;15(10):1000-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12437297</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Microbiol. 2009 Feb;11(2):191-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19016785</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2011 Jan;24(1):68-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20635864</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Pathol. 2007 Jul;8(4):503-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20507517</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Corée du Sud</li>
</country>
</list>
<tree>
<country name="Corée du Sud">
<noRegion>
<name sortKey="Hong, Jeum Kyu" sort="Hong, Jeum Kyu" uniqKey="Hong J" first="Jeum Kyu" last="Hong">Jeum Kyu Hong</name>
</noRegion>
<name sortKey="Hwang, Byung Kook" sort="Hwang, Byung Kook" uniqKey="Hwang B" first="Byung Kook" last="Hwang">Byung Kook Hwang</name>
<name sortKey="Hwang, In Sun" sort="Hwang, In Sun" uniqKey="Hwang I" first="In Sun" last="Hwang">In Sun Hwang</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/AgrobacTransV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000237 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000237 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    AgrobacTransV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:28508261
   |texte=   Functional roles of the pepper leucine-rich repeat protein and its interactions with pathogenesis-related and hypersensitive-induced proteins in plant cell death and immunity.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:28508261" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a AgrobacTransV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Fri Nov 20 15:45:55 2020. Site generation: Wed Mar 6 15:24:41 2024